LOS NÚMEROS ENTEROS
Se conoce
como números enteros o simplemente enteros al conjunto numérico que contiene a la totalidad
de los números naturales, a sus inversos negativos y al cero. Este
conjunto numérico se designa mediante la letra Z, proveniente del vocablo
alemán zahlen (“números”).
Un número entero es un elemento del conjunto numérico que contiene los números naturales , sus opuestos y el cero.
El conjunto de todos los números enteros se representa por la letra
Los números enteros pueden sumarse, restarse, multiplicarse y dividirse, siguiendo el modelo de los números naturales añadiendo unas normas para el uso del signo.
SUMA
- Si ambos son positivos o uno de los dos es cero,
simplemente se deben sumar sus valores absolutos y se conserva el signo
positivo. Por ejemplo: 1 + 3 = 4.
- Si ambos signos son negativos o uno de los dos es
cero, simplemente se deben sumar sus valores absolutos y se conserva el
signo negativo. Por ejemplo: -1 + -1 = -2.
- Si tienen signos diferentes, en
cambio, deberá restarse el valor absoluto del
menor al del mayor, y se conservará en el resultado el signo del
mayor. Por ejemplo: -4 + 5 = 1.
RESTA
- Resta
de dos números positivos con resultado positivo: 10 – 5 = 5
- Resta
de dos números positivos con resultado negativo: 5 – 10 = -5
- Resta
de dos números negativos con resultado negativo: (-5) – (-2) = (-5) + 2 = -3
- Resta
de dos números negativos con resultado positivo: (-2)
– (-3) = (-2) + 3 = 1
- Resta
de dos números de distinto signo y resultado negativo: (-7) – (+6) = -13
- Resta
de dos números de distinto signo y resultado positivo: (2) – (-3) = 5.
- Resta
de dos números positivos con resultado positivo: 10 – 5 = 5
- Resta
de dos números positivos con resultado negativo: 5 – 10 = -5
- Resta
de dos números negativos con resultado negativo: (-5) – (-2) = (-5) + 2 = -3
- Resta
de dos números negativos con resultado positivo: (-2)
– (-3) = (-2) + 3 = 1
- Resta
de dos números de distinto signo y resultado negativo: (-7) – (+6) = -13
- Resta
de dos números de distinto signo y resultado positivo: (2) – (-3) = 5.
MULTIPLICACIÓN
- Más por más igual a más. Por ejemplo: (+2) x (+2) = (+4)
- Más por menos igual a menos. Por ejemplo: (+2) x (-2) = (-4)
- Menos por más igual a menos. Por ejemplo: (-2) x (+2) = (-4)
- Menos por menos igual a más. Por ejemplo: (-2) x (-2) = (+4)
DIVISIÓN
Funciona igual que la
multiplicación. Por ejemplo:
OPERACIONES CON ENTEROS
No hay comentarios:
Publicar un comentario